ERROR IN FINITE DIFFERENCE SOLUTIONS OF LOCAL BUCKLING STRENGTH
نویسندگان
چکیده
منابع مشابه
Local oscillations in finite difference solutions of hyperbolic conservation laws
It was generally expected that monotone schemes are oscillationfree for hyperbolic conservation laws. However, recently local oscillations were observed and usually understood to be caused by relative phase errors. In order to further explain this, we first investigate the discretization of initial data that trigger the chequerboard mode, the highest frequency mode. Then we proceed to use the d...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Local Buckling of Plates Using The Spline Finite Strip Method
The spline finite strip method (S.F.S.M.) for buckling analysis of plates and plate assemblies subjected to longitudinal compression and bending, transverse compression as well as shear is described. The method allows for the boundary conditions. Local buckling coefficients of plates with different boundary conditions under compression, bending and shear are calculated. Convergence studies with...
متن کاملLocal Buckling of Plates Using The Spline Finite Strip Method
The spline finite strip method (S.F.S.M.) for buckling analysis of plates and plate assemblies subjected to longitudinal compression and bending, transverse compression as well as shear is described. The method allows for the boundary conditions. Local buckling coefficients of plates with different boundary conditions under compression, bending and shear are calculated. Convergence studies with...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japan Society of Civil Engineers
سال: 1966
ISSN: 1884-4944,0047-1798
DOI: 10.2208/jscej1949.1966.127_23